Molecular structure and optical nonlinearity of 1,8-bis(ferrocenyl)-3-tbutyl-oct-3-ene-1,5,7-triyne

Shaobin Miao^a, Qian-Feng Zhang^{a*} and Wa-Hung Leung^b

^aDepartment of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China ^bDepartment of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Interaction of 1,8-bis(ferrocenyl)-octatetrayne 1 with one equiv. of *t*-butyl lithium followed by treatment with water gave 1,8-bis(ferrocenyl)-3-*t*-butyl-oct-3-ene-1,5,7-triyne 2. The solid-state structure of 2, containing a bent carbon chain between two ferrocenes, has been determined. The nonlinear optical properties of 2 were also investigated.

Keywords: crystal structures, polyynes, enynes, ferrocenes, optical nonlinearity

Ferrocene is a well-known redox active material and it can be incorporated into metal polynyl complexes and polymers as a redox-active centre.1 Research into these compounds has been developed as a key area of organometallic chemistry.² The polyynes with two end-capping ferrocenes usually have rigid-rod architectures and conjugated backbones which make them useful materials in the fields of linear and non-linear optics, liquid crystallinity and photovoltaic cells.³ Synthetic routes to symmetrical ferrocenyl polyynes and related metal complexes have been extensively reported in recent years, however, of unsymmetrical compounds few have appeared in the literature.⁴ Herein, we describe an addition reaction of 1, 8-bis(ferrocenyl)-octatetrayne to give an unsymmetrical 2, 8-bis(ferrocenyl)-3-t-butyl-oct-3-ene-1,5,7-triyne. The crystal structure and optical nonlinearity of the title compound are reported for the first time in this paper.

Treatment of 1,8-bis(ferrocenyl)-octatetrayne⁴ (1) with an equivalent of t-butyl-lithium in hexane, followed by hydrolysis with a little water, resulted in the isolation of 1,8-bis (ferrocenyl)-3-t-butyl-oct-3-ene-1,5,7-triyne (2) in 35% yield after chromatography. Efforts to isolate other addition products in a few close bands were unsuccessful. The obvious absorption bands at 2202 and 2210 cm⁻¹ in the solution IR spectrum of 2in CH₂Cl₂ are attributed to the characteristic C=C triple bond vibrations. The FAB mass spectrum of 2 displays molecular ion peak corresponding to [M - 1]⁺. A single crystal structure analysis showed a bent carbon-chain turned at a C=C double bond formed by *cis*-addition of a *t*-butyl group and a hydrogen atom. The ORTEP drawing of 2 is shown in Fig. 1. The two angles at carbons of the C=C double bond are 120.1(3) and 124.0(4)° for C2-C3-C4 and C3-C4-C5, respectively. The formal bond C3–C4 has a distance of 1.336(5) Å, which is typical for a double bond. The average length of the three triple bonds is 1.193(5) Å, as would be expected for an isolated –C≡C– length.⁵ The C6–C7 single bond is 1.376(6) Å, which is in the range normally observed for sp-hybridised carbon-carbon distance; comparably, two single bonds relating with the formal double bond in the bend chain [C4-C5 =1.425(6) Å and C2–C3 = 1.420(5) Å] are compared to the expected value 1.42 Å for a single bond between sp- and sp²hybridised carbon atoms.⁶ Similarly, the single bond C3-C30 has a relatively long distance of 1.533(5) Å due to the two sp^2 and sp³-hybridised carbon atoms. The Fe1 ferrocenyl group has an almost perfectly eclipsed geometry with its rings inclined by ca 0.5°, whilst that for Fe2 has ca 15° stagger with rings inclined by ca 2°. The separation between two iron atoms is 7.057 Å.

Compound **2** was dissolved in toluene with a non-saturation concentration of 2.2×10^{-3} mol/dm³ and put in a 1 mm thick glass cell for optical limiting measurements. The linear transmissivity of the sample is 78% at 532 nm, corresponding

Fig. 1 Molecular structure of the title compound (2). Displacement ellipsoids are drawn at the 50% probability level.

Table 1	Selected	bond	lengths	and	angles	in	compound 2
10010 1	00100100	Sona	ionguio	ana	angiou		

Bond	Length (Å)	Bonds	Angle (°)				
Fe1–C (Cp) Fe2–C (Cp)	2.029(3)* 2.015(5)* 1.433(5)	C10-C1-C2 C1-C2-C3 C2-C3-C4	179.8(4) 176.8(4) 120 1(3)				
C1–C2 C2–C3	1.192(5) 1.420(5)	C3-C4-C5 C4-C5-C6	124.0(4) 176.2(5)				
C3–C4 C4–C5	1.336(5) 1.425(6)	C5–C6–C7 C6–C7–C8	179.0(5) 177.1(5)				
C5–C6 C6–C7	1.194(6) 1.376(6)	C7–C8–C20 C4–C3–C30	173.9(5) 122.6(3)				
C7–C8 C8–C20 C2 C20	1.193(5) 1.428(6) 1.522(5)	C2–C3–C30	117.2(3)				
03-030	1.000(0)						

*Mean value.

^{*} Correspondence. E-mail: zhangqf@ahut.edu.cn

to a ground-state absorption cross section of 1.68×10^{-18} cm². For comparison, a solution of C_{60} in toluene solution with the same linear transmissivity was measured under the same experimental conditions.⁷ To obtain the nonlinear optical parameters we employed a z scan theory that considers effective nonlinearity of third-order nature only: $\alpha = \alpha_0 + \alpha_2 I$ and $n = n_0 + n_2 I$, where α_0 and α_2 are the linear and nonlinear absorption coefficient; n_0 and n_2 are the linear and nonlinear refractive index, respectively; and I is the irradiance of the laser beam within the sample.⁸ The peak fluence for z scan is about 1.5 J/dm² both in ns z scans. The α_2 and n_2 value extracted from 7 ns experimental data are 124 cm/GW and 6.53×10^{-5} cm²/GW, respectively. Fig. 2 represents the observed variation of output fluence with input fluence for the title compound and C₆₀ in toluene. It is clear that the optical limiting capability of the title compound is compatible to that of C₆₀ with the same linear transmissivity. The optical limiting threshold, defined as the input fluence at which that transmissivity is 78% of the linear transmissivity, is about 0.54 J/cm² for the ferrocene-polyyne compound and about 0.50 J/cm² for C₆₀.9

In summary, a unsymmetrical ferrocene-polyyne compound, 1,8-bis(ferrocenyl)-3-tert-butyl-oct-3-ene-1,5,7-triyne has been isolated and structurally characterized by X-ray diffraction. With nanosecond-duration laser pulses, the limiting threshold for the title compound is comparable to that of C_{60} , which makes ferrocene-polyynes promising candidates for optical limiting application.

Experimental

Infrared spectrum was recorded on a Perkin-Elmer 16 PC FT-IR spectrophotometer, mass spectrum on a Finnigan TSQ 7000 spectrometer. NMR spectrum was recorded on a Bruker ALX 300 spectrometer operating at 300 MHz for ¹H. Chemical shifts (δ , ppm) were reported with reference to SiMe₄.

To 1,8-bis(ferrocenyl)octatetrayne⁴ (1) (22.0 mg, 0.0472 mmol) in hexane (10 ml) at -40 °C was added one equiv. of t-butyl lithium in hexane (1.6 mmol/ml, 0.03 ml). The mixture was stirred for 1 h and then half a drop of water was added. The solution was allowed to warm to room temperature after 2 h. The crude product was chromatographed on an alumina column using hexane/diethyl ether (4:1) as the eluting solvent. The bright orange-brown crystalline product of **2** was isolated from hexane as the first band in 35 % yield. ¹H NMR (CDCl₃, ppm): δ 1.18 (s, 9H, C(CH₃)₃), 4.16 (s, 5H, C₅H₅), 4.21 (s, 5H, C₅H₅), 4.49 (t, 4H, C₅H₄), 4.53 (t, 4H, C₅H₄), 5.72 (s, 1H, CH). MS (FAB): m/z 523 (M⁺ – 1). IR (CH₂Cl₂, cm⁻¹): v(C≡C), 2202 (w), 2210 (w). Anal. Calcd. for C₃₂H₂₈Fe₂: C, 73.3; H, 5.34%. Found: C, 72.8; H, 5.31%.

Orange crystals suitable for X-ray crystallography were isolated by evaporation of a hexane solution of the title compound in air at 4 °C. Intensity data were collected at 296 K on a Bruker SMART Apex CCD diffractometer for a plate $0.30 \times 0.15 \times 0.04$ mm³. Crystal data: $C_{32}H_{28}Fe_2$, M = 524.24, triclinic, P-1, a = 10.8336(6), b = 10.9552(6), c = 12.9320(7) Å, $\alpha = 67.591(1)$, $\beta = 84.480(1)$, $\gamma = 64.053(1)^\circ$, U = 1271.29(12) Å³, Z = 2, F(000) = 544, $\mu = 1.159$ mm⁻¹, $D_c = 1.37$ g cm⁻³, 4478 data ($\theta_{max} = 25.02^\circ$), refinement converged to R1 = 0.080, wR2 = 0.129, and S = 0.996 for all 4478 refections and 307 parameters; for the 3057 independent reflections with $I \ge 2.0\sigma(I)$, R1 = 0.051. Programs used: SAINT,¹⁰ SADABS,¹¹ SHELXTL-97.¹² CCDC deposition number: 234030.

A toluene solution of 2.2×10^{-3} mol dm⁻³ of **2** was placed in a 1 mm quartz cell for optical measurements. The optical limiting characteristics along with nonlinear absorption and refraction was investigated with a linearly polarised laser light ($\lambda = 532$ nm, pulse width = 7 ns) generated from a Q-switched and frequency-doubled Nd:YAG laser. The spatial profiles of the optical pulses were nearly Gaussian. The laser beam was focused with a 25 cm focal length focusing mirror. The radius of the laser beam waist was measured to

Fig. 2 Comparison of optical limiting properties of the title compound **2** (\bigcirc) and C₆₀ (\bullet) in toluene with the same linear transmissivity of 78% at 532 nm.

be $30 \pm 5 \,\mu\text{m}$ (half-width at $1/e^2$ maximum in irradiance). The incident and transmitted pulse energy were measured simultaneously by two Laser Precision detectors (RjP–735 energy probes) communicating to a computer via an IEEE interface,^{8,13} while the incident pulse energy was varied by a Newport Com. Attenuator. The interval between the laser pulses was chosen to be 1 s to avoid the influence of thermal and long-term effects.¹⁴

We acknowledge the Key Scientific Research Foundation of State Education Ministry (grant no. 204067) and Natural Science Foundation of China (grant no. 90301005) for financial support. Q.-F. Zhang thanks the Alexander von Humboldt Foundation for assistance.

Received: 26 April 2004; accepted 6 September 2004 Paper 04/2483

References

- P. Nguyen, P. Gomez-Elipe and I. Manners, *Chem. Rev.*, 1999, 99, 1515.
- 2 N.J. Long and C.K. Williams, Angew. Chem., Int. Ed., 2003, 42, 2586.
- 3 F. Diederich, *Chem. Commun.*, 2001, 219 and references therein.
- 4 Z. Yuan, G. Stringer, I.R. Jobe, D. Kreller, K. Scott, L. Koch, N.J. Taylor and T.B. Marder, J. Organomet. Chem., 1993, 452, 115.
- 5 B.F. Coles, P.B. Hitchcock and D.B.M. Walton, J. Chem. Soc., Dalton Trans., 1975, 443.
- 6 I. Nitta, Acta Crystallogr, 1960, 13, 1035.
- 7 S.R. Mishra, H.S. Rawat, M.P. Joshi and S.C. Mehendale, *Appl. Phys. A*, 1996, **63**, 223.
- 8 M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan and E.W. Van Stryland, *IEEE J. Quantum Electron.*, 1990, **QE-26**, 760.
- 9 F. Henari, J. Callaghan, H. Stiel, W. Blau and D.J. Cardin, *Chem. Phys. Lett.*, 1992, **199**, 144.
- 10 Bruker SMART and SAINT+, Version 6.02a, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1998.
- 11 G.M. Sheldrick, SADABS, University of Göttingen, Germany, 1997.
- 12 G.M. Sheldrick, SHELXTL Software Reference Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA, 1997.
- 13 M. Sheik-Bahae, A.A. Said and E.W. Van Stryland, *Opt. Lett.*, 1989, **14**, 955.
- 14 H.P. Li, F. Zhou, X.J. Zhang and W. Ji, Appl. Phys. B, 1997, 64, 659.